Deuxième partie

Rappel sur les nombres réels

1 Les ensembles usuels de nombres

On rappelle les notations usuelles pour les ensembles de nombres :

- \mathbb{N} est l'ensemble des **entiers naturels positifs** $\{0, 1, 2, \dots\}$.
- \mathbb{Z} est l'ensemble des **entiers relatifs** {...., -2, -1, 0, 1, 2,}. \mathcal{Q} est l'ensemble des **rationnelles**, i.e $\mathcal{Q} = \{\frac{a}{b}; a \in \mathbb{Z}, b \in \mathbb{N} \setminus \{0\}\}$.
- \mathbb{R} représente l'ensemble des **nombres réels** et l'on a les inclusions suivantes : $\mathbb{N} \subset \mathbb{Z} \subset \mathcal{Q} \subset \mathbb{R}$.
- L'ensemble $\mathbb{R} \setminus \mathcal{Q}$ est appelé l'ensemble des **irrationnelles**.
- Pour chacun de ces ensembles, l'ajout du signe * signifie que l'on exclut 0 de l'ensemble : \mathbb{N}^* , \mathbb{Z}^* , \mathbb{Q}^* et \mathbb{R}^* .

2 Axiomes des nombres réels

On sait que:

- i) L'ensemble des réels ℝ est muni des opérations usuelles et internes : l'addition $+:(x,y)\in\mathbb{R}^2\longmapsto x+y\in\mathbb{R}$ et la multiplication $\cdot:(x,y)\in\mathbb{R}^2\longmapsto x\cdot y\in\mathbb{R}$ constitue un corps commutatif, c'-à-d:
 - 1) L'addition et la multiplication sont commutatives :

$$\forall x, y \in \mathbb{R} : x + y = y + x \quad et \quad x \cdot y = y \cdot x.$$

2) L'addition et la multiplication sont associatives :

$$\forall x, y \in \mathbb{R} : x + (y + z) = (x + y) + z \quad et \quad x \cdot (y \cdot z) = (x \cdot y) \cdot z.$$

3) L'addition admet un élément neutre 0 tel que :

$$x + 0 = x, \quad \forall x \in \mathbb{R}.$$

et la multiplication admet un élément neutre 1 tel que :

$$x \cdot 1 = x, \quad \forall x \in \mathbb{R}.$$

4) Pour tout $x \in \mathbb{R}$, il existe $x' = -x \in \mathbb{R}$ tel que :

$$x + x' = 0.$$

et si $x \neq 0$, il existe $x^* = \frac{1}{x}$ tel que :

$$x.x^* = 1.$$

5) La multiplication est distributive par rapport à l'addition :

$$\forall x, y, z \in \mathbb{R}: \quad x \cdot (y+z) = x \cdot y + x \cdot z.$$

- ii) Il y a une relation d'ordre total sur ℝ: ℝ muni de la relation usuelle "inférieur ou égal ≤" est totalement ordonné. C'est à dire la relation < vérifie les propriétés suivantes :
 - $1. \le \text{est réflexive}$:

En effet; pour tout $x \in \mathbb{R}, x \leq x$.

2. \leq est antisymétrique :

En effet; pour tout $x, y \in \mathbb{R}$, si $x \leq y$ et $y \leq x$, alors, x = y.

- 3. \leq est transitive: En effet; pour tout x, y et z dans \mathbb{R} , si $x \leq y$ et $y \leq z$, alors $x \leq z$.
- 4. De plus, pour tout $x, y \in \mathbb{R}$, on a ou bien $x \leq y$, ou bien $y \leq x$ (les éléments de \mathbb{R} sont tous comparables).

Théorème 2.1. (Propriété d'Archimède)

 \mathbb{R} est **Archimédien**: pour tout $x, y \in \mathbb{R}$ avec x > 0; il existe $n \in \mathbb{N}^*$ tel que: nx > y.

iv)

Définition 2.2. (Valeur absolue d'un réel)

Soit $x \in \mathbb{R}$. On définit la valeur absolue de x, notée |x|, par :

$$|x| = \begin{cases} x & si \ x \ge 0, \\ -x & si \ x \le 0. \end{cases}$$

Proposition 2.3. (Propriétés de la valeur absolue d'un réel)

(a) Pour tout $x \in \mathbb{R}$, on a: $|x| \ge 0$, |x| = |-x|, $|x| \ge x$, $|x| \ge -x$, $|x| = \max(-x, x)$ et $|x| = 0 \Leftrightarrow x = 0$.

 $(b) \ \ Pour \ tout \ x,y \in \mathbb{R}, \ on \ a: \\ |xy| = |x||y|, \ |x| \leq \alpha \Longleftrightarrow -\alpha \leq x \leq +\alpha; \\ (\alpha \geq 0), \ \Big||x| - |y|\Big| \leq |x+y| \leq |x| + |y| \ \ et \ \Big||x| - |y|\Big| \leq |x-y| \leq |x| + |y|.$

v)

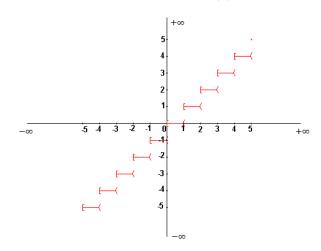
Définition 2.4. (Partie entière d'un réel)

Soit $x \in \mathbb{R}$, le plus grand entier inférieur ou égal à x s'appelle la partie entière de x. Nous le noterons E(x) ou bien [x].

Exemple 2.5. $E(\pi) = 3$, $E(-\pi) = -4$, E(0) = 0, $E(\frac{1}{2}) = 0$, E(1,5) = 1, E(-0,5) = -1 et $E(-\frac{3}{2}) = -2$.

Définition 2.6. (Fonction partie entière)

La fonction partie entière notée E, est définie par $E: \mathbb{R} \longrightarrow \mathbb{R}$ $x \longmapsto E(x)$



Théorème 2.7. (Propriétés de la fonction partie entière)

1) Par définition même, on a :

$$\forall x \in \mathbb{R}, \qquad \left\{ \begin{array}{l} E(x) \in \mathbb{Z}, \\ E(x) \leq x < E(x) + 1. \end{array} \right.$$

- 2) La partie entière d'un nombre réel est unique.
- 3) Si $x \in \mathbb{R}$, E(x) + 1 est le plus petit entier vérifiant :

$$x < E(x)+1$$
.

4) La fonction partie entière est croissante sur \mathbb{R} , i.e

$$\forall x, y \in \mathbb{R}: \quad x \leq y \Longrightarrow E(x) \leq E(y).$$

4) La fonction partie entière vérifie :

$$\forall x \in \mathbb{R}: \quad E(x+1) = E(x) + 1.$$

5) Pour tout $x, y \in \mathbb{R}$, on a:

$$E(x) + E(y) \le E(x+y) \le E(x) + E(y) + 1.$$

vi)

Théorème 2.8. (Densité des nombres rationnels et irrationnels dans \mathbb{R})

- \mathbb{Q} est dense dans $\mathbb{R}: \overline{\mathbb{Q}} = \mathbb{R}$ c-à-d; pour tout $x, y \in \mathbb{R}$ tel que $x < y \in \mathbb{R}$, il existe $q \in \mathbb{Q}$ tel que : x < q < y (entre tout deux nombres réels, il existe un nombre rationnel).
- $-\mathbb{R}\setminus\mathbb{Q}$ est dense dans $\mathbb{R}:\overline{\mathbb{R}\setminus\mathbb{Q}}=\mathbb{R}$ (entre tout deux nombres réels, il existe un nombre irrationnel).

Remarques 2.9. (a) L'ensemble des nombres entiers naturels \mathbb{N} n'est pas dense dans \mathbb{R} ; par exemple il n'existe pas de nombre naturel entre les deux réels 2 et 3.

(b) Ainsi, l'ensemble des nombres entiers relatifs \mathbb{Z} n'est pas dense dans \mathbb{R} ; par exemple il n'existe pas de nombre entier relatif entre les deux réels -1 et -2.

vii)

Définition 2.10. (Intervalles de \mathbb{R})

- (a) Soit $I \subseteq \mathbb{R}$. On dit que I est un intervalle de \mathbb{R} si pour tout $x, y \in \mathbb{R}$ on $a : \forall r \in \mathbb{R}, x \leq r \leq y \Rightarrow r \in I$.
- (b) Soient $a, b \in \mathbb{R}$ tels que : a < b.
 - i. L'ensemble $\{x \in \mathbb{R} : a \le x \le b\}$ est appelé intervalle fermé de \mathbb{R} et il est noté par [a, b].
 - ii. L'ensemble $\{x \in \mathbb{R} : a < x \leq b\}$ est appelé intervalle ouvert à gauche et fermé à droite de \mathbb{R} et il est noté par [a,b].
 - iii. L'ensemble $\{x \in \mathbb{R} : a \le x < b\}$ est appelé intervalle ouvert à droite et fermé à gauche de \mathbb{R} et il est noté par [a,b[.
 - iv. L'ensemble $\{x \in \mathbb{R} : a < x < b\}$ est appelé intervalle ouvert de \mathbb{R} et il est noté par]a,b[.
 - v. L'ensemble $\{x \in \mathbb{R} : x < a\}$ est appelé intervalle ouvert à droite et non borné à gauche de \mathbb{R} et il est noté par $]-\infty,a[$.
 - vi. L'ensemble $\{x \in \mathbb{R} : a < x\}$ est appelé intervalle ouvert à gauche et non borné à droite de \mathbb{R} et il est noté par $[a, +\infty[$.
- 3 Rappel sur le vocabulaire de base (majorant, minorant, ensemble borné, maximum, minimum, borne supérieure et borne inférieure)

Définition 3.1. (Majorant, minorant) Soient A une partie non vide de \mathbb{R} ($\varnothing \neq A \subset \mathbb{R}$) et $m, M \in \mathbb{R}$.

- 1. On dit que m est un minorant de A, si $\forall x \in A : x \geq m$.
- 2. On dit que M est un majorant de A, si $\forall x \in A : x \leq M$.

Exemple 3.2. Dans (\mathbb{R}, \leq) , on considère l'ensemble $A = \{2, \frac{5}{2}, 7\}$.

Remarquons que :

a. $2 \le 2$, $2 \le \frac{5}{2}$ et $2 \le 7$, alors 2 est un minorant de A. Aussi $1 \le 2$, $1 \le \frac{5}{2}$ et $1 \le 7$, donc 1 est un autre minorant de A.

Alors, on constate que, pour tout $m \in]-\infty,2]$; m est un minorant de A.

b. $2 \le 7$, $\frac{5}{2} \le 7$ et $7 \le 7$, donc 7 est un majorant de A.

Aussi $2 \le 8$, $\frac{5}{2} \le 8$ et $7 \le 8$, alors 8 est un autre majorant de A.

Donc, pour tout $M \in [7, +\infty[$, M est un majorant de A.

Exemple 3.3. Soit $\mathbb{N} = \{0, 1, 2, \dots\}$ l'ensemble des entiers naturels. Remarquons que :

Pour tout $x \in \mathbb{N}$; $x \ge 0$, c-à-d 0 est un minorant de \mathbb{N} , mais comme : $\forall n \in \mathbb{N}, n \le n+1$ nous déduisons que l'ensemble \mathbb{N} n'admet pas de majorants.

Exemple 3.4. Soit $A =]0, 1[= \{x \in \mathbb{R} \ tel \ que : 0 < x < 1\}.$

Remarquons que :

a. $\forall x \in A : x > 0$, alors 0 est un minorant de A. De plus, $\forall m \in]-\infty,0]$; m est un minorant de A.

b. $\forall x \in A : x < 1$, alors 1 est un majorant de A. De plus, $\forall M \in [1, +\infty[$, M est un majorant de A.

Remarque 3.5.

- 1. En général, le majorant et le minorant ne sont pas uniques. (Voir les exemples (3.2), (3.3) et (3.4)).
- 2. Le majorant et le minorant d'un ensemble peuvent appartenir ou non à A. (Voir les exemples (3.2), (3.3) et (3.4)).

Définition 3.6. $(Ensemble\ born\acute{e})$

Soit $\phi \neq A \subset \mathbb{R}$.

1. On dit que l'ensemble A est minoré (ou borné inférieurement) dans \mathbb{R} , si A admet au moins un minorant dans \mathbb{R} , c'est à dire :

$$\exists m \in \mathbb{R}, \ \forall x \in A : x \ge m.$$

2. On dit que l'ensemble A est majoré (ou borné supérieurement) dans \mathbb{R} , si A admet au moins un majorant dans \mathbb{R} , c'est à dire :

$$\exists M \in \mathbb{R}, \ \forall x \in A : x \leq M.$$

3. On dit que l'ensemble A est borné dans \mathbb{R} , s'il est majoré et minoré dans \mathbb{R} , c'est à dire :

$$\exists m, M \in \mathbb{R}, \ \forall x \in A : m < x < M.$$

Exemple 3.7. 1. L'ensemble $A = \{2, \frac{5}{2}, 7\}$ est borné dans \mathbb{R} car : $\forall x \in A : 1 \le x \le 8$.

- 2. L'ensemble IN est minoré (borné inférieurement) par 0 mais n'est pas majoré (n'est pas borné supérieurement).
- 3. L'ensemble $B = \{\cos x, x \in \mathbb{R}\}$ est borné. En effet, Tout d'abord, remarquons que : $B = \{-1, \dots, 0, \dots, 1\} = [-1, 1]$.
 - B est majoré par 1 (puisque pour tout $x \in B$, $\cos x \le 1$).
 - B est minoré par -1 (puisque pour tout $x \in B$, $\cos x \ge -1$).

Définition 3.8. (Le minimum et le maximum d'un ensemble) $Soit \emptyset \neq A \subset \mathbb{R}$.

1. On dit que m est le plus petit élément (minimum) de A, si m est un minorant de A et $m \in A$. On le note par $\min A$.

$$m = \min A \iff \begin{cases} 1. \ \forall x \in A : x \ge m, \\ 2. \ m \in A. \end{cases}$$

2. On dit que M est le plus grand élément (maximum) de A, si M est un majorant de A et $M \in A$. On le note par $\max A$.

 $M = \max A \Longleftrightarrow \left\{ \begin{array}{l} 1. \ \forall x \in A : x \leq M, \\ 2. \ M \in A. \end{array} \right.$

Exemple 3.9. 1. On considère l'ensemble $A = \{2, \frac{5}{2}, 7\}$, on a :

- a. $\min A = 2$, car 2 est minorant de A et $2 \in A$.
- b. $\max A = 7$, car 7 est un majorant de A et $7 \in A$.
- 2. Soit $IN = \{0, 1, 2, \dots\}$.
 - a. $\min \mathbb{N} = 0$ car 0 est un minorant de \mathbb{N} et $0 \in \mathbb{N}$.
 - b. max IN n'existe pas, car IN n'est pas majoré.
- 3. Soit C =]0, 1[.
 - a. min C n'existe pas, car il n'existe pas de minorant de A qui appartient à C.
 - b. max C n'existe pas, car il n'existe pas de majorant de A qui appartient à C.

Remarques 3.10. 1. Si min A existe, il est unique.

- 2. Si max A existe, il est unique.
- 3. Un ensemble peut ne pas avoir d'éléments minimum ou maximum. Par exemple A =]0,1[.

Définition 3.11. (Borne supérieure et borne inférieure)

- 1. On dit que M est la borne supérieure de A si M est un majorant de A et M est le plus petit des majorants de A. Si la borne supérieure de A existe, on la note par $\sup A$. C'est à dire $\sup A = \min\{M; M \text{ est un majorant de } A\}$.
- 2. On dit que m est la borne inférieure de A si m est un minorant de A et m est le plus grand des minorants de A. Si la borne inférieure de A existe, on la note par $\inf A$. C'est à dire $\inf A = \max\{m; m \text{ est un minorant de } A\}$.

Exemple 3.12. 1. Soit l'ensemble $A = \{2, \frac{5}{2}, 7\}$, on a

- a. L'ensemble des minorants de A est $]-\infty,2]$ et comme inf A représente le plus grand des minorants de A, alors : inf A=2 et dans ce cas : inf $A=\min A=2$ (puisque $2\in A$).
- b. L'ensemble des majorants de A est $[7, +\infty[$ et comme $\sup A$ représente le plus petit des majorants de A, alors : $\sup A = 7$ et dans ce cas : $\sup A = \max A = 7$ (puisque $7 \in A$).
- 2. Soit B =]2, 3[, on a
 - a. L'ensemble des minorants de B est $]-\infty,2]$ et comme inf B représente le plus grand des minorants de B, alors : inf B=2, (dans ce cas minB n'existe pas).
 - b. L'ensemble des majorants de B est $[3, +\infty[$ et comme $\sup B$ représente le plus petit des majorants de B, alors : $\sup B = 3$, (dans ce cas $\max B$ n'existe $\max B$).

Remarque 3.13.

- i) Pour parler du sup (resp inf), il faut que notre ensemble soit majoré (resp minoré).
- ii) inf A et sup A peuvent appartenir ou non à l'ensemble A, comme le montre les exemples ci-dessus.

Lemme 3.14.

- $\inf A$ est un minorant de A.
- $-\inf A \in A \Longrightarrow \min A \ existe \ et \ \min A = \inf A.$
- $-\min A \ existe \Longrightarrow \inf A \ existe \ et \ \min A = \inf A.$
- $-\inf A \notin A \Longrightarrow \min A \text{ n'existe pas.}$
- $\sup A$ est majorant de A.
- $-\sup A \in A \Longrightarrow \max A \text{ existe et } \max A = \sup A.$
- $-\max A \ existe \Longrightarrow \sup A \ existe \ et \ \max A = \sup A.$
- $-\sup A \notin A \Longrightarrow \max A \text{ n'existe pas.}$

Exemple 3.15.

- 1. Soit A = [0, 1[, on a :
 - $\min A$ existe et égale à 0, alors $\inf A$ existe et $\inf A = \min A = 0$.

- $\inf A = 0 \in A$, $alors \min A = \inf A = 0$.
- $\sup A = 1 \notin A$, alors $\max A$ n'existe pas.
- 2. Soit B =]-1, 5], on a:
 - $\inf B = -1 \notin B$, alors $\min B$ n'existe pas.
 - $\sup B = 5 \in B$, alors $\max B$ existe et $\max B = \sup B = 5$.
 - $\max B = 5$ existe, alors $\sup B$ existe et $\max B = \sup B = 5$.

Théorème 3.16. (Propriétés de la borne supérieure et de la borne inférieure)

- Dans \mathbb{R} , toute partie non vide et majorée admet une borne supérieure.
- Dans \mathbb{R} , toute partie non vide et minorée admet une borne inférieure.

Théorème 3.17. (Caractérisation de la borne supérieure et de la borne inférieure dans \mathbb{R})

$$\textbf{1.} \ M = \sup A \Longleftrightarrow \left\{ \begin{array}{l} 1. \ \forall x \in A : x \leq M \ (\textit{M est un majorant}). \\ 2. \ \forall \alpha < M; \exists y \in A | \alpha < y \ (\textit{Tout nombre plus petit que M n'est pas un majorant de A}). \end{array} \right.$$

Ceci est équivalent à dire que :

$$M = \sup A \Longleftrightarrow \left\{ \begin{array}{l} 1. \ \forall x \in A : x \leq M. \\ 2. \ \forall \varepsilon > 0, \exists x_{\varepsilon} \in A | M - \varepsilon < x_{\varepsilon}. \end{array} \right.$$

$$\textbf{2.} \ m = \inf A \Longleftrightarrow \left\{ \begin{array}{l} 1. \ \forall x \in A : x \geq m \ (m \ est \ un \ minorant). \\ 2. \ \forall \beta > m; \exists z \in A | \beta > z \ (Tout \ nombre \ plus \ grand \ que \ m \ n'est \ pas \ un \ minorant \ de \ A). \end{array} \right.$$

Ceci est équivalent à dire que :

$$m = \inf A \Longleftrightarrow \left\{ \begin{array}{l} 1. \ \forall x \in A : x \geq m. \\ 2. \ \forall \varepsilon > 0, \exists y_{\varepsilon} \in A | m + \varepsilon > y_{\varepsilon}. \end{array} \right.$$

Lemme 3.18. Soient A et B deux parties non vide bornées de \mathbb{R} . Alors

- 1. $A \cup B$ est bornée.
- 2. $\sup(A \cup B) = \max(\sup A, \sup B)$ et $\inf(A \cup B) = \min(\inf A, \inf B)$.

Ainsi,

- 1. $A \cap B$ est bornée.
- 2. $\sup(A \cap B) < \min(\sup A, \sup B)$ et $\inf(A \cap B) > \max(\inf A, \inf B)$.

Lemme 3.19. 1. $\sup[a, b] = \max[a, b] = b$ et $\inf[a, b] = \min[a, b] = a$.

- 2. $\sup[a,b] = \max[a,b] = b$, $\inf[a,b] = a$ et $\min[a,b]$ n'existe pas.
- 3. $\sup[a, b] = b$, $\max[a, b]$ n'existe pas et $\inf[a, b] = \min[a, b] = a$.
- 4. $\sup |a,b| = b$, $\inf |a,b| = a$ et $\max |a,b|$, $\min |a,b|$ n'existent pas.
- 5.] $-\infty$, a[n'est pas borné inférieurement, alors $\inf] -\infty$, a[et $\min] -\infty$, a[n'existent pas. De plus, $\sup] -\infty$, a[et $\max] -\infty$, a[n'existe pas.
- 6. $]a, +\infty[$ n'est pas borné supérieurement, alors, $\sup]a, +\infty[$, $\max]a, +\infty[$ n'existent pas. De plus, $\inf]a, +\infty[$ a et $\min]a, +\infty[$ n'existe pas.